|  | Year:10 | Subject: | Maths | Autumn 1 |  | Autumn 2 |  | Spring 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\text { H }}{ \pm} \\ & \underline{\underline{1}} \end{aligned}$ | Subject Concepts (Substantive knowledge) | 5 concepts areas:1) Number2) Algebra3) Geometry \& Measure4) Statistics \& ProbabilityRatio \& Proportion |  |  |  | Probability $\mathbf{1 0}$ <br> Combined Events <br> Mutually Exclusive Events <br> Experimental Probability <br> Independent Events <br> Tree Diagrams <br> Conditional Probability <br> Venn Diagrams <br> Set Notation |  | Multiplicative Reasoning 11 - Growth and decay - Compound Measures - Ratio and Proportion |  |
|  |  |  |  |  |  |  | $\begin{aligned} & \text { Similarity and Congruence } \\ & \text { - Congruence } \\ & \text { - Proof } \\ & \text { - Similarity } \end{aligned}$ |  |


|  |  |  | Takeaway Learning | Takeaway Learning: | Takeaway Learning: - Show that two triangles are <br> congruent. <br> - Know the conditions of <br> - Pronruence. <br> - Solve propes are congruent. <br> congruence. <br> - Use the ratio of corresponding <br> sides to work out scale <br> - Find missing lengths on similiar <br> shapes. <br> - Use similar triangles to work <br> - Use the link between linear scale factor and area scale <br> - Use the link between scale factors for length, area and volume to solve problems. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Disciplinary Knowledge |  | Equations and Inequalities 9 Algebra progression map | Probability $\mathbf{1 0}$ Probability progression map | Multiplicative Reasoning 11 <br> Fractions, decimals and percentages progression map |
|  |  |  |  |  | Similarity and Congruence 12 Position and direction progression map |
|  | Common Misconceptions |  | Equations and Inequalities 9 <br> Not working inversely to solve equations <br> Misapplying completing the square <br> - Factorising quadratics incorrectly <br> Once pupils know how to factorise a quadratic expression of the form $x^{2}+b x+c$ they might overcomplicate the simpler case of factorising an expression such as $3 x^{2}+6 x(\equiv(3 x+0)(x+2))$ <br> - Some pupils may think that $(x+a)^{2} \equiv x^{2}+a^{2}$ quadratics of the form $x^{2}+b x+c$ to quadratics of the form $a x^{2}+b x+c$; e.g. $2 x^{2}+7 x+10 \equiv(2 x$ $+5)(x+2)$ because $2 \times 5=10$ and $2+5=7$. | Probability 10 <br> - Not understanding words mutually exclusive <br> - Not reducing denominator for conditional probability <br> - Not setting out tree diagram correctly <br> - When constructing a Venn diagrams for a given situation, some pupils may struggle to distinguish between elements that are included in the intersection of both regions or only in one of the regions <br> - Some pupils may muddle the conditions for adding and multiplying probabilities <br> - Some pupils may add the denominators when adding fractions | Multiplicative Reasoning 11 <br> - Not converting to same unit to solve DST problem. <br> - Incorrect multipliers used <br> - Mixing up acceleration and distance calculation on a graph <br> - Some pupils may incorrectly think 0.111111... $=1 / 11$ <br> - Some pupils may think that an the amount created by increasing a quantity by $5 \%$ repeated four times is the same as increasing the quantity by $5 \%$ and multiplying that amount by 4 . <br> - Some pupils may think the percentage multiplier for a $20 \%$ increase (or decrease) is 0.2 <br> Similarity and Congruence 12 <br> - Unable to recall all 4 conditions of congruence <br> - Misapplying link between LSF and ASF/VSF <br> - Setting out proof of congruence in unclear manner <br> - Some pupils may think that the resulting image of an enlargement has to be larger than the original object. <br> - Some pupils may think that the order of transforming an object does not have an effect on the size and position of the final image. <br> - Some pupils may link scale factors and similarity using an additive, rather than multiplicative, relationship. |
|  | Enabling or Adapting the Curriculum | SEND Students | Equations and Inequalities 9 <br> - Number lines in classrooms to support counting <br> - Grouping similar items before introducing the idea of collecting like terms and algebra, $x$ and y <br> - Solving problems with a box indicating missing numbers instead of letters. | Probability 10 <br> - Multiplications grids available to support times tables <br> - Number lines in classrooms to support counting <br> - Fraction walls available in lessons <br> - Equivalences overview/chart | Multiplicative Reasoning 11 <br> - Multiplications grids available to support times tables <br> - Triangle formulae shared eg DST <br> - Scaffolding worksheets to gradually build to independence <br> - Modelled examples |


|  |  | - Scaffolding worksheets to gradually build to independence <br> - Modelled examples <br> - Sentence starters and writing frames | - Scaffolding worksheets to gradually build to independence <br> - Modelled examples <br> - Sentence starters and writing frames | - Sentence starters and writing frames <br> Similarity and Congruence 12 <br> - 4 conditions of congruence shared with examples <br> - Multiplications grids available to support times tables, which in turn will help with scale factors <br> - Scaffolding worksheets to gradually build to independence <br> - Modelled examples Sentence starters and writing frames |
| :---: | :---: | :---: | :---: | :---: |
|  | Disadvantaged Students | - Scaffolding worksheets to gradually build to independence <br> - Modelled examples <br> - Sentence starters and writing frames when answering problem solving questions <br> - Necessary equipment to support in lessons | - Scaffolding worksheets to gradually build to independence <br> - Modelled examples <br> - Sentence starters and writing frames when answering problem solving questions <br> - Necessary equipment to support in lessons | - Scaffolding worksheets to gradually build to independence <br> - Modelled examples <br> - Sentence starters and writing frames when answering problem solving questions <br> - Necessary equipment to support in lessons |
|  |  | - Show me a pair of simultaneous equations with a solution $x=4, y=-2$. And another. And another ... <br> - Convince mex+2y=11,3x+4y=18 can be solved using substitution and using elimination. Which method is best in this case? <br> Always/ Sometimes/ Never: Solving a pair of simultaneous equations using elimination is more efficient than using substitution | - Show me an example of a Venn diagram. And another. And another <br> - Show me an example of a two-way table. And another. And another <br> Always / Sometimes / Never: All the regions of a Venn diagram must be populated | Multiplicative Reasoning 11 <br> - Show me a fraction that can be expressed as a recurring decimal. And another. And another ... <br> - Always/Sometime/Never: If the denominator is odd, the fraction can ve expressed as a recurring decimal <br> - Convince $\mathrm{me}^{1 / 7}$ can be expressed as a recurring decimal <br> - Convince me 0.9999999999 ... = 1 <br> Kenny thinks that the interest gained when $£ 100$ is increased $20 \%$ per annum for 4 years can be calculated by multiplying $£ 100$ by 2.0736 . Do you agree with Kenny? Explain your answer. <br> Similarity and Congruence 12 <br> - Show me a pair of similar shapes. And another. And another ... <br> - Always/ Sometimes/ Never: The resulting image of an enlargement is larger than the original object <br> Kenny thinks rotating an object $90^{\circ}$ about the origin followed by a reflection in the $y$-axis has the same effect as reflecting an object in the $y$-axis followed by a rotation $90^{\circ}$ about the origin. Do you agree with Kenny? Explain your answer. |
| Literacy/Numeracy | LITERACY <br> Reading: | Equations and Inequalities 9 <br> Key Words <br> - Add and subtract algebraic fractions <br> - Multiply and divide algebraic fractions <br> - Simplify an algebraic fraction <br> - Expand the product of three binomials <br> - Expand the product of two binomials involving surds <br> - Factorise an expression involving the difference of two squares <br> - Factorise a quadratic expression of the form $a x^{2}+b x$ $+c$ ( $a$ is prime) <br> - Factorise a quadratic expression of the form $a x^{2}+b x$ $+c$ ( $a$ is composite) | Probability 10 <br> Key Words <br> Outcome, equally likely outcomes <br> Event, independent event, dependent event <br> Tree diagrams <br> Theoretical probability, experimental probability <br> Random <br> Bias, unbiased, fair <br> Enumerate <br> Set <br> Conditional probability <br> Venn diagram | Multiplicative Reasoning 11 <br> Key Words <br> Fraction <br> Mixed number <br> Top-heavy fraction <br> Percentage change, percentage increase, <br> percentage increase <br> Compound interest, Simple interest <br> Terminating decimal, Recurring decimal <br> (Exponential) growth, decay <br> Similarity and Congruence 12 <br> Key Words <br> Perpendicular bisector <br> Scale Factor |




